

High Throughput Screening of Toxicity Pathways Perturbed by Environmental Chemicals

Outline

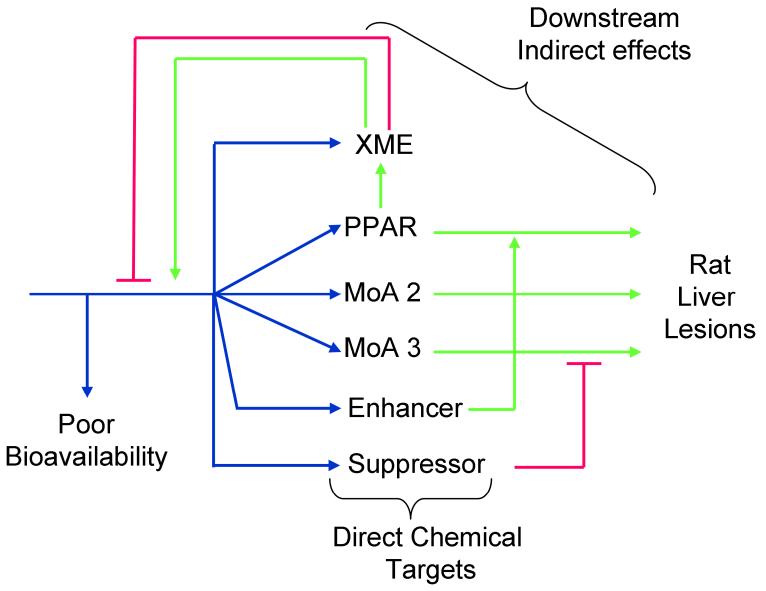
- Things to watch for in the data
- 3 Laws of Predictive Toxicology
- Rat liver tumor associations and signatures
- Future directions

Things to Watch for in the Data

in vitro data

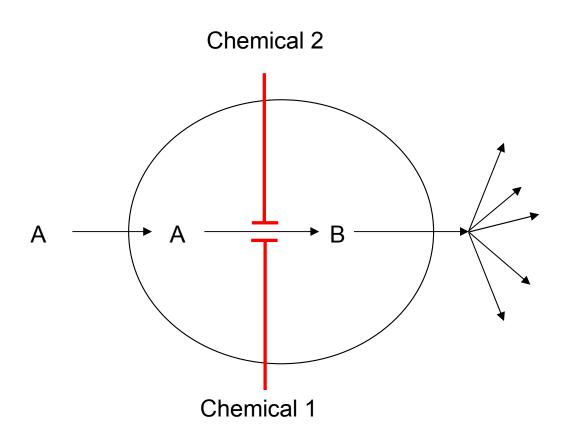
- –What does the assay measure?
- -How reproducible are the assay results?
- -How do you compare an AC50 from one data set to another?

in vivo data


- -What is the difference between missing data and a no call?
- -When is a no call really missing data?
- -How many mechanisms could give rise to a type of toxicity?

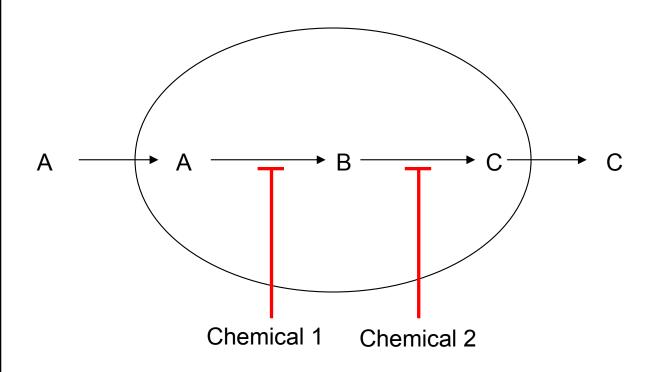
Chemicals

- –What do the replicates mean?
- –Are "replicates" always the same chemical?
- Consider metabolism / biotransformation


Toxicity is Multi-factorial

First "Law" of Predictive Toxicology "Direct Interactions"

If 2 chemicals have the same set of direct interactions and have the same bioavailability, they will cause similar toxicities


Relevant to discussion of:

- Adaptive Biology
- Differing Time Scales

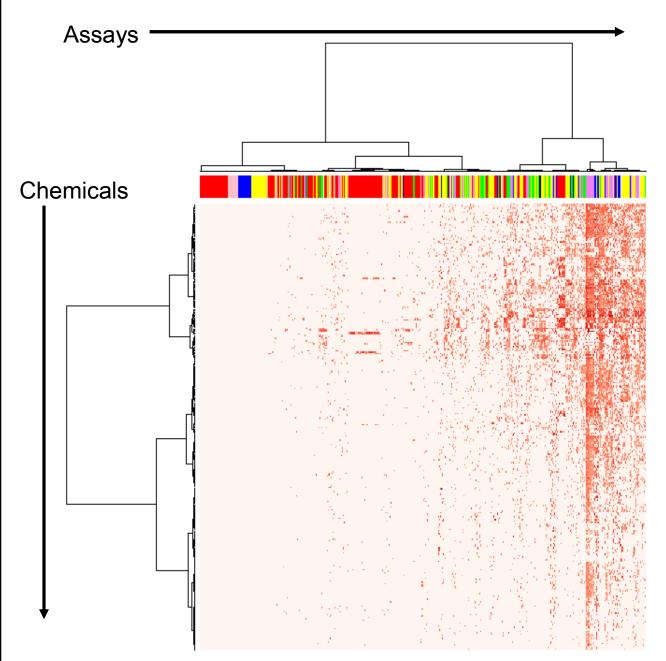
Second "Law" of Predictive Toxicology "Pathway Perturbations"

If 2 chemicals cause the same set of nearby indirect responses and have the same bioavailability, they will cause similar toxicities

Relevant to discussion of:

 Chemicals with different targets causing same downstream effects

3 "Laws" of Predictive Toxicology


- If 2 chemicals have the same set of direct interactions and have the same bioavailability, they will cause similar toxicities
- 2. If 2 chemicals cause the same set of nearby indirect responses and have the same bioavailability, they will cause similar toxicities
- 3. It will be rare to find pairs of chemicals that behave so closely that Laws 1 and 2 can be applied with 100% confidence

Nonetheless ...

- (1) and (2) are the conceptual basis of using in vitro screening
- (3) Is why we focus on prioritization before prediction

The ToxCast In Vitro Data Set

Many hits – median value=50

Fewer in cell-free HTS (Novascreen, red)

Many hits are at or near top of tested concentration range

A few are in nanomolar range

Some Expected Hits from the Data

- Estrogen receptor (ER)
 - -Bisphenol A, Methoxychlor, HPTE
- Androgen Receptor (AR)
 - -Vinclozolin, Linuron, Prochloraz
- PPAR
 - -PFOA, PFOS, Diethylhexyl Phthalate, Lactofen
- Mitochondrial Poisons
 - -Azoxystrobin, Fluoxastrobin, Pyraclostrobin
- Acetylcholinesterase Inhibition
 - -Multiple organophosphorus pesticides

Focus on Rodent Liver Toxicity

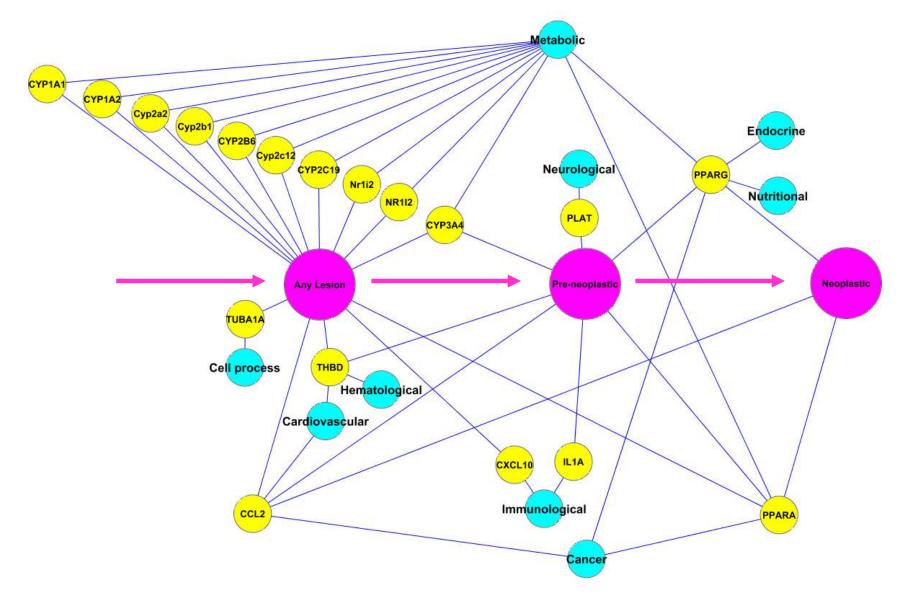
- Several liver lesion classes for rat, similar for mouse
 - -All chemicals: 248
 - -No Liver lesions:122
 - -Any Lesion:126
 - –Pre-neoplastic or neoplastic:58
 - -Neoplastic: 21
 - -Liver Proliferative Lesions:61
 - -Liver Tumors (=neoplastic): 21

Calculate Univariate Associations with Rat Liver Proliferative Lesions

- Significance Tests:
 - -T-test (treat in vitro as continuous)
 - –Chi-squared (treat in vitro as dichotomous, using $100\mu M$ as the cutoff)
- Significant associations are:
 - -PPARA
 - -PPARG
 - -HMGCS2 (regulated by PPAR)
 - -RXRA (dimerizes with PPAR)
 - -CCL2
 - -CCL26

PPAR signaling and Rodent Liver Tumors

- PPAR is involved with lipid and fatty acid metabolism
- Xenobiotics can activate PPAR
 - Leads to peroxisome proliferation and hepatocyte hypertrophy
- PPAR-driven liver tumorigenesis does not seem to act in humans
 - But PPAR-driven hepatotoxicity is of concern (FDA)
 - PPAR is a target for human drugs to treat metabolic syndrome / diabetes
- 3 isoforms
 - -PPARA / PPARα
 - PPARG / PPARy
 - -PPARD / PPARδ



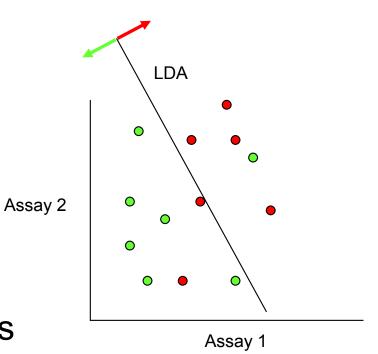
CCL2 Associations with Environmental Chemicals and Liver Toxicity are Novel

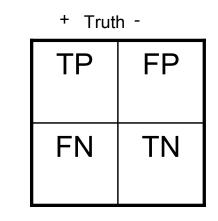
- Chemokine (C-C motif) ligand 2
- Drives angiogenesis and tumor cell invasion
- Seen in both humans and rodents
- Increased CCI2 levels associated with
 - -Human Prostate cancer severity and progression
 - -Human Gastric carcinomas
 - -Human Oral carcinomas
 - Human Breast cancer
 - Human Thyroid cancer
 - Rat cholestatic liver injury
- May be related to PPAR signaling

Rat Liver Disease Progression Links

Links Drawn for Univariate Associations with p<0.01

Toxicity Signature Definition




- An algorithm that takes as its input
 - A chemical
 - -One or more in vitro assay measurement or in silico parameters
- And returns
 - A classification for that chemical for a toxicity endpoint
- Other terms
 - -Model
 - -Classifier

Association Analysis / Signatures

- Use Machine Learning methods
 - -SLR: Stepwise Logistic Regression
 - –LDA: Linear Discriminant Analysis
 - -SVM: Support Vector Machines
 - -Many others
- For each binary endpoint, build models of form
 - -Predictor = F(assay values)
 - -If
 - Predictor for a chemical meets criteria
 - -Then
 - Predict endpoint to be positive for the chemical

Test

Machine Learning Process

- ML Methods used
 - –SVM Support Vector Machines
 - -NNET Neural Networks

- Seemed to consistently overfit Consistent with unbalanced data set
- LDA Linear Discriminant Analysis
- -SLR Stepwise Logistic Regression
- Use AC50/LEC Data and log transform
- T-test Feature Selection
 - -p<0.1 for cutoff
 - -Accept maximum of n(chemical)/10 feature
- Use 5-fold cross validation
- Evaluate performance using balanced accuracy (BA)
 - BA=average of sensitivity and specificity

SLR Signature:Rat Liver Proliferative Lesions

Assay	Coefficient	Gene	Gene Name	
Intercept	-2.86			
ATG_PPARg_TRANS	0.298	PPARG	peroxisome proliferator-activated receptor gamma	
NVS_ADME_hCYP3A4	0.614	CYP3A4	cytochrome P450, family 3, subfamily A, polypeptide 4	
CLM_OxidativeStress_24hr	0.403	H2AFX	H2A histone family, member X (oxidative stress)	
BSK_SM3C_MCP1_up	0.331	CCL2	chemokine (C-C motif) ligand 2	
BSK_BE3C_IL1a_down	0.389	IL1A	interleukin 1, alpha	
ATG_RORg_TRANS	0.51	RORC	RAR-related orphan receptor C	
BSK_BE3C_tPA_up	0.386	PLAT	plasminogen activator, tissue	
CLM_Hepat_Steatosis_24hr	0.181			
ATG_PPARa_TRANS	0.254	PPARA	peroxisome proliferator-activated receptor alpha	
CLM_MitoticArrest_24hr	-0.322			
CLM_p53Act_72hr	0.28	TP53	tumor protein p53	
ATG_Sp1_CIS	0.195	SP1	Sp1 transcription factor	
ATG_NRF2_ARE_CIS	-0.171	NFE2L2	nuclear factor (erythroid-derived 2)-like 2 (oxidative stress)	

Start with 624 Assay measurements, 3 p-chem, 103 chemical structure class variables Genes associated with tumors or liver disease in red

Signature Performance – Proliferative Lesions

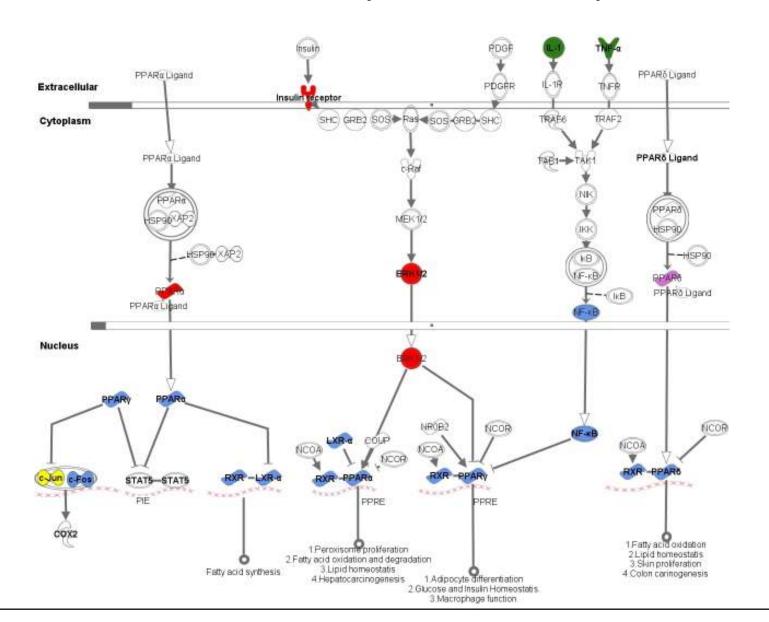
In vivo data

Signature

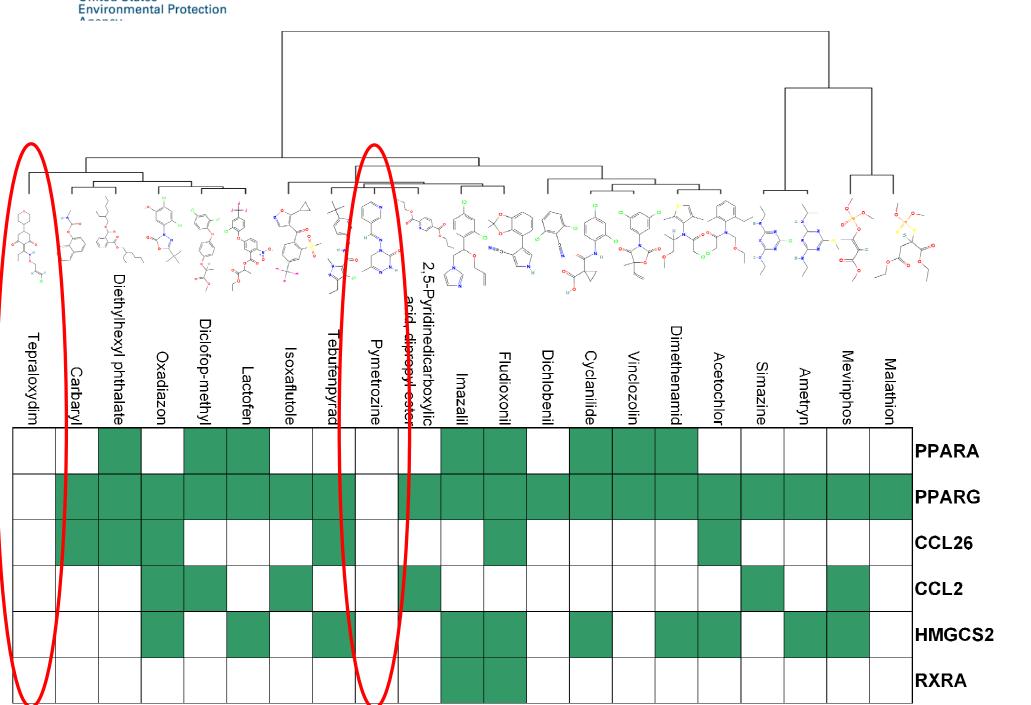
	+	-
+	31	11
_	30	176

Sensitivity=51% Specificity=94%

- 248/309 chemicals had rat data in ToxRefDB (used for model building)
- 8 other chemicals were predicted to be positive
 - PFOA: Causes rat liver adenomas
 - PFOS: Causes rat liver adenomas
 - Diniconazole: rat liver hypertrophy
 - Chlorothalonil: rat liver enlargement, kidney tumors
 - TCMTB: testicular and thyroid adenomas
 - No data for Niclosamide, Methylene bis(thiocyanate), Phenoxyethanol


Examine False Positives

- Look for data outside of ToxRefDB for highest scoring false positives
- Fenpyroximate
 - Liver hypertrophy in a rat 90-day subchronic study
- Bromoxynil
 - Non-proliferative lesions (2 year rat study)
 - –Liver adenomas (2 year mouse study)
- Cyproconazole
 - -Hepatocellular adenomas and carcinomas in mice
- Tribufos
 - Liver hemangiosarcomas in male mice


Probing the PPAR Pathway – 33 Assays

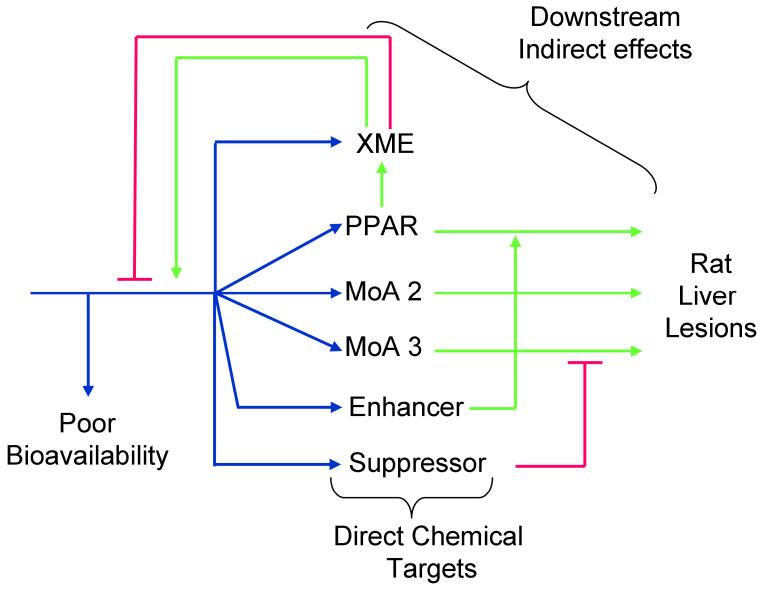
Chemicals causing liver proliferative lesions hit significantly increased number of assays in PPAR Pathway

Rat Liver Tumorigens are diverse in chemical structure and *in vitro* Signature

Rat Liver Tumorigens vs. Tanimoto Distance Clusters

Simple structure clustering does not bring liver tumorigens together

Will more sophisticated structure-based methods do better?



Open Research Issues

- Need better models / machine learning applications
 - The other talks should provide some answers
- Think about pathways
 - -Mortensen et al. talk & several posters
- Think about biotransformation / PK
 - -Martin et al. and Thomas et al. talks
- Bring in more assays
 - -ToxCast and Tox21, several posters
- Add more chemicals, some with human tox data
 - Pfizer and HESI collaborations

Toxicity is Multi-factorial

